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Measurements of the hydrodynamic damping acting on a vertical, 0)5 m diameter cylinder in
planar oscillatory motion at Stokes parameter, b, up to 1)4]105 are presented. The results are
also shown as a variation of drag coe$cient, C

d
, with Keulegan}Carpenter number, KC, where

the range of KC numbers studied is from 1]10~3 to 1. The experiments were carried out in the
Delta Flume at Delft Hydraulics Laboratories in Holland and the cylinder was mounted from
a pendulum suspension system. The hydrodynamic damping is the sum of radiation damping,
due to gravity waves generated by the cylinder piercing the water surface, and viscous damping.
A frequency-domain solution from Dalrymple & Dean (1972) is used to predict the radiation
damping. An estimate of the viscous damping is then obtained by subtracting the predicted
radiation damping from the measured hydrodynamic damping. Results for the viscous damping
derived in this way are found to be close to those expected from experimental studies carried out
by Bearman & Russell (1996) and Chaplin & Subbiah (1996) to measure viscous damping on
a submerged cylinder. ( 2001 Academic Press
1. INTRODUCTION

IN SOME MODES OF OSCILLATION, compliant o!shore structures such as TLPs have natural
frequencies that are not far removed from the range of primary wave excitation. Typical
natural frequencies in heave, pitch and roll correspond to periods of 2}4 s, while signi"cant
levels of the wave spectrum extend over a range of about 6}20 s. Nonlinearities in the waves
and in wave/structure interaction at the so-called &sum frequencies' raise possibilities of
resonant excitation, and the consequences of second-order and third-order high frequency
forcing have come to be known as springing and ringing.

Mechanisms for high frequency excitation, involving complex interactions in the vicinity
of the water surface, have been studied analytically by a number of authors, assuming
irrotational #ow, and experimentally by Chaplin et al. (1997). Much less attention has been
given to an equally important aspect of the problem of predicting responses and stresses,
namely, the level of hydrodynamic damping. For a surface-piercing cylinder oscillating in
still water, the hydrodynamic damping arises from two main sources: radiation damping
due to the generation of waves and viscous damping. Viscous damping forces depend on the
nature of the #ow around oscillating bodies and in particular on the boundary layers, about
which, at full scale, relatively little is known. The hydrodynamic damping of large compliant
o!shore structures acts mainly on cylindrical members having circular, rounded rect-
angular or rectangular cross-sections of dimensions of the order of 10 m. The resonant
oscillations of concern have amplitudes as small as 1 cm, with frequencies around 0)3 Hz.
0889}9746/01/070891#18 $35.00/0 ( 2001 Academic Press
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On the basis of these "gures, order-of-magnitude estimates for the Reynolds number Re and
Keulegan}Carpenter number KC for the oscillating #ow are 2]105 and 0)006. However, in
purely oscillatory #ow, the Stokes parameter b"Re/KC"D2/l¹ is considered more
appropriate than the Reynolds number as a measure of the importance of viscosity, and for
the full-scale conditions described above, b&3]107.

Though in the past much experimental work has been devoted to the loading on fully
submerged cylinders in oscillatory #ow, the regime of very small KC numbers, appropriate
to the case of TLP damping in still water, has received much less attention and examples
include the work of Bearman & Russell (1996) and Chaplin & Subbiah (1996). Earlier
measurements at higher values of KC, but still less than 1, are described by Sarpkaya
(1986a) and Otter (1990). For practical reasons, all these measurements were carried out at
values of b of more than two orders of magnitude lower than those appropriate to full-scale
conditions.

The #ow around an oscillating circular cylinder with an attached, two-dimensional,
laminar boundary layer was "rst treated by Stokes (1851). He developed a solution for the
damping force, which was later extended by Wang (1968) by using the method of inner and
outer expansions. Using Wang's result, the parts of the force in-phase and out of phase with
the motion can be related to the drag coe$cient, C

d
, and inertia coe$cient, C

m
, used in

Morison's equation to give

C
d
"

3n3

2KC
[(nb)~1@2#(nb)~1!1

4
(nb)~3@2], (1)

C
m
"2#4(nb)~1@2#1

4
(nb)~3@2. (2)

These expressions are only valid for KC@1, ReKCA1 and bA1. For high b values, the
drag coe$cient reduces to just the "rst term in equation (1),

C
d
"

3n3

2KC
(nb)~1@2"

26)24

KCJb
. (3)

Though it cannot be expected to be valid in conditions where the boundary layer is
turbulent, or where the #ow is in some other way three dimensional, Wang's result provides
a useful reference point for C

d
and is hereafter referred to as W. The measurements of

Sarpkaya (1986a) and Otter (1990) con"rmed that at KC numbers below a certain threshold
(depending on the value of b), the drag coe$cient becomes inversely proportional to KC, in
agreement with equation (3); but otherwise Sarpkaya's and Otter's results, at around,
respectively, b"1)1]104 and b"6)2]104, di!er markedly from each other. From
measurements down to KC"0)8 Sarpkaya found C

d
+5W, while for KC'0)03

Otter reported C
d
+W. However, it seems unlikely that measurements of drag coef-

"cient at b values as high as 6)2]104 should agree with the two-dimensional laminar #ow
result.

The measurement of drag on a body in a relative oscillating #ow of small amplitude
brings about experimental problems that are not encountered in the so-called Morison
regime, where the drag and inertia components of the force are of roughly similar magni-
tudes. When a cylinder is driven through #uid initially at rest with a prescribed harmonic
motion of small amplitude at high b, the ratio of the amplitudes of the drag and inertia

forces (assuming that C
d
"1 and C

m
"2) is 1)3/Jb. This ratio is 0)01 at b"1)7]104,

causing severe di$culties in the calculation of reliable estimates of drag coe$cients (and
therefore of hydrodynamic damping) from measurements of forces or pressures on the
cylinder.
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Bearman & Russell (1996) avoided this problem by measuring the decaying oscillations of
submerged cylinders mounted beneath a pendulum. The drag coe$cient is directly related
to the logarithmic decrement of the motion, and so a single test run provided results over
a range of KC numbers at constant b. Facing the same problem, Chaplin & Subbiah (1996)
developed a test rig in which the cylinder was elastically mounted under water and excited
at resonance by an externally applied oscillating force of constant amplitude. In this case,
measurement of the amplitude and phase of the cylinder response in each test provided the
drag coe$cient for a particular KC and b. In both sets of experiments, it was necessary to
take particular care over accounting for the #uid loading on supporting struts and end
plates. For small KC, the drag coe$cient in both sets of experiments was found to be
inversely proportional to KC. At b+7]104, Bearman & Russell found C

d
+2W, and at

b+1)7]105. Chaplin & Subbiah found C
d
+2)2W.

From an analysis of their drag coe$cient measurements for a smooth cylinder, Bearman
& Russell (1996) proposed the following relationship for the variation of C

d
with KC at high

values of b:

C
d
"

2]26)24

KCJb
#0)08KC. (4)

This expression is valid for KC values up to about 5 but at the low KCs studied in this paper
the second term can be neglected. Hence equation 4 reduces to C

d
"2W.

It is not known how the drag coe$cient will change with further increases in b, and,
possibly more important, it is not known what structural changes will take place in the
boundary layer with further increases in scale. As #ow visualisations by Honji (1981), and
later by Bearman & Mackwood (1992), have shown, the boundary layer on an oscillating
cylinder, depending on the values of KC and b, has an organised three-dimensional
structure that must in#uence the loading on it. At some higher value of the Stokes
parameter, this structure is likely to break down and be replaced by a fully developed
turbulent #ow characterised possibly by a b-independent drag coe$cient. Large scale
experimental work by Bearman et al. (1985) helped to identify the onset of such post-critical
conditions in wave #ow around a cylinder in the Morison regime at higher KC numbers,
but these conclusions are unlikely to apply in the present case.

In addition to the in#uence of b on the drag of a cylinder, it is known that the roughness
of the surface also has an e!ect. Sarpkaya (1986a) tested a rough cylinder at b"1800 with
a relative roughness k/D"1/100 (where k is the surface roughness and D the cylinder
diameter) for a range of KC-numbers (KC'0)4) and found an increase in C

d
compared to

a smooth cylinder. In later investigations, Sarpkaya found C
d
+3.2W for a rough cylinder

with a relative roughness k/D"1/100 and C
d
+2)2W for a smooth cylinder at a b-value

around 1]106 (Sarpkaya 2000). Bearman & Mackwood (1992) tested three di!erent
roughnesses (k/D"1/50, k/D"1/100 and k/D"1/200) for b-values from 1)4]104 to
2)1]104 and compared the results with the results obtained for a smooth cylinder. They
found an increase in C

d
above the smooth cylinder values for the relative roughnesses of

k/D"1/50 and k/D"1/100. For the surface "nish with k/D"1/200 they found results
close to those obtained with a smooth cylinder. This disagrees with a result from Chaplin
and Subbiah (1998) who tested a rough cylinder with a much lower relative roughness of
k/D"1/1300, in the low Keulegan}Carpenter regime, for a Stokes parameter b of 1)7]105
and they found C

d
"3W.

In this paper we present results from experiments carried out in the Delta Flume at Delft
Hydraulics Laboratories to measure hydrodynamic damping at large scale. Measurements
were made on a 0)5 m diameter, vertical, circular cylinder that pierced the water surface. The
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investigation included measurements made on the cylinder oscillating in still water, oscillat-
ing in-line and transverse to waves, oscillating in-line and transverse to a current and
oscillating in a combined wave and current #ow. Here, we limit the presentation of results to
those for planar oscillatory #ow. Since the cylinder passed through the water surface it
radiated waves to the surrounding #uid, and this generated an additional radiation
damping force. To be able to estimate the drag coe$cient due to viscous forces, it is
necessary to subtract the radiation damping from the total damping in order to obtain the
viscous damping. A frequency-domain solution due to Dean & Dalrymple (1972) is used to
"nd the radiation damping. It will be shown that, depending on the #ow parameters, the
radiation damping can have a large in#uence on the total damping.

2. EXPERIMENTAL ARRANGEMENT

The experiments were carried out in the Delta Flume at Delft Hydraulics in Holland. This
tank is 230 m long and 5 m wide and for the present experiments it was "lled to a mean
water depth of 5 m. The tank is equipped with a piston-type wave paddle that can generate
waves with heights up to 2 m. There is a carriage that runs along the tank on rails with
a maximum speed of 1 m/s and this can be used to simulate the e!ect of a current. For the
still water experiments described here, the magnetic brakes on the carriage were applied and
in addition the wheels were blocked. The total weight of the carriage, with additional mass
added, was 30 000 kg and this provided a stable base on which the cylinder suspension
system was to be mounted. The experiments were conducted outdoors but during the
measurement programme the winds were very light and it was not thought that atmo-
spheric conditions had any in#uence on the results.

For the experiments, a 7)1 m long and 500 mm diameter hollow steel circular cylinder
with a wall thickness of 10 mm and a total mass m

#:-
"&1200 kg was constructed by

welding together three sections. The cylinder passed through the water surface and its
immersed length was 4)78 m (Figure 1), which for small amplitudes of oscillation gives an
added mass, m

a
, of 940 kg. Throughout the experimental programme there was no sign of

any water leaking into the cylinder. In order to simulate a surface typically found on
sections of o!shore structures, the cylinder with diameter D was covered with a waterproof
abrasive sheet, which gave a relative roughness of k/DK1/8000. (It should be noted that in
a few places some small ripples appeared in the abrasive sheet, locally increasing k/D to
&1/150.)

The apparatus used to suspend the cylinder was a larger version of the double pendulum
system employed by Bearman & Russell (1996). The support system was constructed using
a double &A-frame' (Figure 1) with a height of 4 m, and a base 3 m]2)5 m that was "rmly
attached to the carriage. This system had a total weight of &4 tonnes, which was in
addition to the weight of the carriage mentioned earlier. The frame was constructed from
150 mm hollow square steel sections and four pendulum arms, made from 120 mm hollow
square steel sections, were used in the form of a &double pendulum' system. The pendulum
arms were attached to the support system and the pendulum base using #exures manufac-
tured from spring steel with dimensions 50]30]3 mm. The pendulum base provided the
attachment for the cylinder, a release mechanism, a means for changing the frequency of
oscillation and attachments to allow calibrations to be carried out. The e!ective earth point
for the release mechanism and the frequency adjustment and calibration arrangements was
an adjustable table, manufactured from 120 mm hollow square steel sections, that was
fastened solidly to the lower end of the pendulum support system. The clearance between
the pendulum base and the adjustable table provided for a normal cylinder displacement of
100 mm with an adjustment of $50 mm. The cylinder moved in predominately horizontal



Figure 1. Scaled design drawing of experimental set-up; Dimensions are in mm.
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motion combined with a very small vertical displacement. Bearman & Russell (1996) found
that this small motion along the direction of the cylinder axis did not a!ect measurements of
hydrodynamic damping.

A worm gear winch with a capacity of 1000 kg was used to displace the pendulum from its
neutral position. Four 24V DC Magnets with a total capacity of 1200 kg were then used to
hold the pendulum and cylinder at an initial displacement (Figure 2). To release the
cylinder, the magnets were either switched o! by using a trigger impulse or by hand. In
order to adjust the frequency of the system, a series of springs were used (Figure 2),
connected between the lower end of the pendulum and the base. This provided a possible
frequency range from 0)167 to 0)941 Hz, giving b values from 4)16]104 up to 2)34]105.

In order to "nd the e!ective mass per unit length M of the system, the following
relationship was used:

M"

i
h

(2n f
h
)2¸

, (5)

where i
h
"sti!ness, f

h
"frequency in water and ¸"immersed cylinder length. To obtain

the sti!ness in water, a calibrated weight was suspended over a pulley (Figure 2). By



Figure 2. Experimental arrangement.
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measuring the resulting displacement the sti!ness of the system can be determined, and then
by measuring the oscillation frequency the e!ective mass can be determined. In order to
obtain the oscillating displacement, a miniature DC energised LVD transducer with very
small friction and a maximum stroke of 15 mm was attached near the top of the pendulum
arms, between the arms and the pendulum support system (Figure 2). The transducer was
carefully calibrated and the output was used to calculate the KC number, as well as
providing time histories of the decaying motion. Calibrations were carried out before and
after a series of experiments and the maximum di!erences recorded were &$1%. The
e!ective masses per unit length for the four frequencies tested are given in Table 1, together
with sti!nesses and the frequencies measured in air and water.

3. EXPERIMENTAL METHOD AND THEORETICAL BACKGROUND

The hydrodynamic damping of a body is directly linked to the drag acting on it and in this
paper, measurements of damping will be used to calculate drag coe$cients. In the present
experiments it is assumed that the hydrodynamic force on the cylinder in oscillatory motion



TABLE 1
Experimental conditions

Experi- f
a

f
h

Stokes f
a

f
h

i
h

M

oD2

Reduced damping
ment parameter

b-value Hydro-
dynamic

Radiation Viscous

f
rh

f
rw

f
rv

SP00 0)283 0)167 4)16]104 0)0014 0)0050 2)98]103 2)23 0)142 0)0063 0)1357
SP02 0)492 0)366 9)13]104 0)0011 0)0075 1)52]104 2)39 0)226 0)101 0)125
SP04 0)625 0)470 1)17]105 0)0012 0)0090 2)73]104 2)55 0)290 0)179 0)111
SP06 0)725 0)548 1)37]105 0)0013 0)0097 3)95]104 2)75 0)334 0)240 0)094
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can be represented by Morison's equation. This well known equation expresses the total
force per unit length as the sum of drag and inertia force components and is given by

F"

1

2
oDC

d
xR DxR D#

nD2

4
oC

m
x( , (6)

where xR is the velocity and x( the acceleration of the body and o is water density. However, it
should be noted that in the experiments described here the total damping is the sum of
hydrodynamic damping and structural damping and the hydrodynamic damping is com-
posed of viscous damping and wave radiation damping components. Hence, by measuring
the decay of xL

i
, the peak amplitude of the cylinder during a cycle, over N cycles the total

damping is given by

2nN (f
0
#f

w
#f

v
)"logA

xL
i

xL
i`N
B , (7)

where f
0

is the structural damping, f
w

is the radiation damping and f
v

is the viscous
damping. The hydrodynamic damping, f

h
is

f
h
"f

v
#f

w
. (8)

Figure 3(b) shows a typical time history of a decaying oscillation in water. The damping,
found from decaying oscillations, is often expressed in the form of a reduced damping
coe$cient given by

f
r
"

2M(2nf
v
)

oD2
. (9)

Similar expressions can be de"ned for the other components of damping and the total
damping.

3.1. STRUCTURAL DAMPING

The structural damping was found experimentally by measuring the decaying motion of the
cylinder in air for a variety of frequencies. Over N cycles of motion, the structural damping
is given by

2nf
0
"G

log (xL
i
/xL

i`N
)

N H
!*3

. (10)



Figure 3. Decaying oscillation in air and water.
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The decay tests were carried out three times for each frequency, with similar results for all
three runs, and the mean damping was found. Figure 3(a) shows a typical time history of the
decaying oscillation in air and Figure 4 shows the damping factor f

0
versus the dimension-

less amplitude, A/D. The structural damping factor is given in Table 1 for the four
frequencies tested.

3.2. RADIATION DAMPING

Oscillating structures radiate waves to a surrounding #uid and the force on the body due
to the generation of these waves, F

w
, is the sum of a component in phase with the



Figure 4. Damping factor versus dimensionless amplitude in air and water ( f
h
"0)167, b"4)16]104,

f
0
"0)0014, f

h
"0)005, f

rh
"0)142): ], hydrodynamic damping; h, structural damping.
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body's velocity and a component in phase with its acceleration (Sarpkaya & Isaacson
1981),

F
wi
"!

6
+
j/1

(k
ij
x(
j
#j

ij
xR
j
) for i"1, 2,2, 6, (11)

where xR
j
is the velocity and x(

j
is the acceleration of the body. The subscript j relates to the

six components of motion of a #oating body, i.e., for translational motion; surge, sway and
heave and for the rotational motion: roll, pitch and yaw. The terms k

ij
and j

ij
are the added

mass and damping due to wave radiation. The equation of motion for an oscillating body
can be written in the form

F(e)
wj
"(m

ij
#k

ij
)x(

j
#j

ij
xR
j
#i

ij
x
ij
, (12)

where m
ij

is the mass of the system and i
ij

is the system sti!ness. It should be noted that
equation (12) does not include any structural or viscous damping terms and relates solely to
wave radiation. The added mass and damping can be expressed as

k
ij
"

io
u2 P

S0

Im[/(f)
j

]
L/(f)

i
Ln

dS, (13a)

j
ij
"

io
u P

S0

Re[/(f)
j

]
L/(f)

i
Ln

dS, (13b)

where Re[ ] and Im[ ] represent real and imaginary parts, u is frequency, o is #uid density,
S is volume of the body per unit length and /(f)

j
is the velocity potential due to the body

motion. The energy input into the body required to produce wave radiation is given by

E"!+
i
FK
we

xRK
i
"+

i,j

j
ij
xRK
i
xRK
j
, (14)

where only the damping coe$cient is associated with the dissipated energy and the part
from the added mass vanishes due to the periodicity of the #ow (Mei 1983).

There are relatively few analytic solutions for predicting wave radiation from oscillating
bodies but the case of a vertical, surface piercing circular cylinder has been treated by
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a number of authors. A frequency-domain solution due to Dalrymple & Dean (1972) [see
also Dean & Dalrymple (1993)] is used here to calculate the hydrodynamic damping due to
wave radiation for a cylinder in planar oscillatory motion. The lower end of the cylinder is
presumed to slide over the bed with zero friction and the #ow is assumed to be inviscid such
that a velocity potential, which is a solution of Laplace's equation, can be de"ned.
A linearized boundary condition is applied at the free surface of the water. Clearly, there are
viscous e!ects present in the real #ow but at the very small KC numbers treated here they
will be con"ned to a thin boundary layer around the cylinder and are expected to have
a negligible in#uence on the wave radiation-damping component. Complete details of the
method of the solution can be found in the references cited above and only the results will
be presented here.

Using results from Dean & Dalrymple (1972), the energy input from the cylinder to
produce a wave is given by

E"

DA
o
D2(sinh 2kh#2kh)

2k
2no, (15)

where h is the water depth and k is the wave number. For a sway motion of the cylinder,
which has constant amplitude with depth, the coe$cient A

o
becomes

A
o
"

2uaxL
11

sinh(k
0
h) e~*l

sinh(2k
0
h)#2k

0
h

1

(ak
0
)[H (1)

1
(k

0
a)]@

, (16)

where l"tan~1 (Y@
1
(k

0
a)/J@

1
(k

0
a)) is the phase angle and H (1)

1
(k

0
a) is the Hankel function of

the "rst kind, where Y
1
(k

0
a) and J

1
(k

0
a) are Bessel functions.

The equation of motion for the cylinder is assumed to be that for an ideal mass}spring}
damper system,

mx(
11
#bxR

11
#ix

11
"0. (17)

The dissipated energy by damping over one cycle is given by
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dxL
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t

FK xRK
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dt. (18)

If the oscillation is harmonic, then the energy over one cycle is

*E
w
"M¸u2xL 2

11
(2nf

w
). (19)

If we equate the dissipated energy over one cycle to the energy required to radiate waves
during one cycle, we can obtain an expression for the damping factor due to wave radiation,

f
w
"

4oa3 (sinh(k
0
h))2

M¸(sinh(2k
0
h)#2k

0
h)

(e~*l)2(H(k
0
a))2

k
0
a

, (20)

where H(k
0
a)"M(k

0
a)[H(1)

1
(k

0
a)]N~1.

In Figure 5 the radiation damping given by equation (20) is plotted against ka for a ratio
of cylinder radius to water depth appropriate to the experiments of a/h"0)05. Assuming
that deep water waves are generated by the small amplitude motion of the cylinder then,
from the dispersion relationship, ka"u2a/g. It can be seen that the damping increases
rapidly with ka, reaching a maximum at about ka"0)7, and then continuously falls with
further increases in ka. The symbols shown in the "gure are the theoretical values of
radiation damping appropriate to the four test cases given in Table 1 and it can be seen that
they all lie on the steeply rising portion of the curve.



Figure 5. Estimated radiation damping for a range of gravity wave parameter for a/h"0)05: *, theoretical
solution Dalrymple & Dean; sss, theoretical damping for experiments.
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3.3. VISCOUS DAMPING

A structure vibrating in a viscous #uid experiences hydrodynamic damping due to viscous
drag forces. The hydrodynamic force acting on an oscillating cylinder is assumed to be given
by Morison's equation [equation (6)] and the equation of motion for the cylinder becomes

Mx(#2Mf
s
uxR #i

h
x"F

D
"!1

2
oDC

d
DxR DxR . (21)

Here, M is the total mass per unit length, including the added mass component from
Morison's equation, f

s
the structural damping, u the structural natural frequency, i

h
the

sti!ness of the structure, o density of #uid, D the cylinder diameter, C
d
the drag coe$cient

and x the structure displacement. It should be noted that equation (21) includes the
structural damping but not the radiation damping.

As the structure undergoes harmonic motion with amplitude xL , the structure velocity can
be expressed as

xR (t)"uxL cos (ut). (22)

Then, by expanding the nonlinear term on the right-hand side of equation (21) as a Fourier
series and taking just the leading term, this becomes

DxR DxR "xL 2 u2 Dcos(ut)Dcos(ut)

+

8

3n
xL 2u2 cos(ut)"

8

3n
xL uxR . (23)



Figure 6. Estimated and experimental viscous damping for di!erent b-values: eee, experimental;*, theoret-
ical (2W); } }, theoretical (3)2W).
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The equation of motion can then be rewritten as

Mx(#2Mu Cfs#
4

3n
oD2

2M (2n)
C

d
KCDxR #i

h
x"0 (24)

and the viscous damping is

f
v
"

4

3n
oD2

2M (2n)
C

d
KC, (25)

where the drag coe$cient is unknown. By adopting equation (4) for the drag coe$cient and
by noting that the right hand term becomes insigni"cant for KC@1, an estimate of the
viscous dampings can be calculated from

f
v
"

1

3n2

oD2

M

2]26)24

Jb
. (26)

The hydrodynamic damping is the sum of the viscous and radiation damping [equa-
tion (8)] and hence the viscous damping can be found by subtracting the radiation damping
given by equation (20) from the experimental found hydrodynamic damping f

h
. In Figure 6,

estimated viscous damping values are compared with the damping found from the experi-
mental study. The estimated viscous damping is calculated from equation (26) for a smooth
cylinder by using the relationship C

d
"2W (Bearman & Russell 1996) and from equations

(25) and (4) by applying C
d
"3)2W (Sarpkaya 2000) for a rough cylinder.

To be able to calculate the drag coe$cient from the experimental viscous damping,
equation (25) is rearranged and the relationship in equation (8) is used to express the viscous
damping

C
d
"

3n
4KC

2M[2n(f
h
!f

w
)]

oD2
"

3n
4

f
r

KC
. (27)

4. EXPERIMENTAL RESULTS AND DISCUSSION

Measurements of hydrodynamic and structural damping factors are shown plotted in
Figure 4 against cylinder amplitude, for a cylinder frequency in water of 0)167 Hz
(case SP00). It can be seen that there is very little variation of damping with cylinder



Figure 7. Theoretical and experimental hydrodynamic damping for di!erent frequencies: e, hydrodynamic
damping (experimental); 0, hydrodynamic damping (theoretical M2WN); *, hydrodynamic damping (theoretical

M3)2WN).
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displacement. Damping factors for all four frequencies tested are given in Table 1. Further,
the measured hydrodynamic damping, expressed as a reduced damping, is plotted in
Figure 7 against cylinder frequency measured in water. The hydrodynamic damping is
observed to increase steadily with increasing frequency. Since the hydrodynamic damping is
generated by two completely di!erent physical processes, there is no natural way to present
the damping as a function of a nondimensional frequency. If the predominant component is
viscous damping then it could be presented as a function of b, whereas if it is radiation
damping then the appropriate nondimensional frequency would be u2a/g.

Also shown in Figure 7 are estimates of hydrodynamic damping obtained by combining
radiation damping from equation (20) and viscous damping from equation (25) and
equation (4) by applying C

d
"2W for a smooth cylinder and C

d
"3)2W for a rough

cylinder. It is interesting to note that the estimate for the hydrodynamic damping using the
relationship C

d
"3)2W shows a close agreement with the experimental results. Roughness

(k/D) in#uences only the viscous damping and an increase above smooth cylinder values has
been shown for a k/D-number down to 1/100 by Sarpkaya (1986a, 2000) and Bearman
& Mackwood (1992) and down to 1/1300 by Chaplin & Subbiah (1998). There is an
uncertainty as to how much the damping is in#uenced at even smaller k/D-values and it is
not known at what level of k/D a cylinder surface can be called smooth. Bearman
& Mackwood (1992) found a very small increase in damping for k/D"1/200, whereby
Chaplin & Subbiah found C

d
"3W for a relative roughness k/D"1/1300. The relative

roughness tested in this study of k/D"1/8000 is some times smaller than that tested by
Chaplin & Subbiah, and corresponds to a roughness height of 1)5% of the nominal
thickness of the Stokes layer in laminar oscillatory #ow (5D(nb)~1@2). While an increase in
drag is not expected for this small relative roughness, it should be noted that a small amount
of rippling appeared on the abrasive sheet which increased k/D locally to 1/150.

It can easily be shown that the growth in hydrodynamic damping with frequency
illustrated in Figure 7 is due to an increase in radiation damping. The radiation damping
derived from equation (20) is plotted in Figure 8 for the four frequencies that are tested.
Plotted in the same "gure is the viscous damping obtained from the empirical expression
given in equation (26). Whereas viscous damping is predicted to fall with increasing
frequency, radiation damping increases. By increasing the oscillation frequency the value
of b increases and, as shown by equation (26), viscous damping is expected to fall.
The viscous damping found by subtracting the radiation damping from the measured total



Figure 8. Comparison of analytical and experimental viscous damping and estimated radiation damping: s,
viscous damping (experimental); 0, viscous damping (theoretical M2WN); *, radiation damping.
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hydrodynamic damping, is also shown as plotted in Figure 8. The viscous damping derived
in this way follows a similar trend with frequency to that predicted by equation (26) but the
level is higher, which indicates a C

d
value greater than 2W. Reduced damping values for

radiation and viscous e!ects are given in Table 1.
While it should be noted that there is likely to be some uncertainty in the estimates of

both radiation and viscous damping, the method of presentation used in Figure 8 apparent-
ly places all the error on viscous damping. It can be seen from Figure 5 that in the range of
the experimental parameters the radiation damping rises sharply with increasing ka, so
a small error in calculating the frequency of oscillation will lead to a large error in damping.
The viscous damping plotted in Figure 8 is being compared with values obtained from
experiments where the end conditions on the cylinder are quite di!erent. In the experiments
of Bearman & Russell (1996), end-plates were "tted to the cylinder whereas in the present
work, there are no end-plates. This will have some in#uence on the estimates of viscous
damping.

The measurements of damping are undoubtedly in#uenced by extraneous structural
e!ects, which need some further explanation. Although the carriage wheels were locked,
some vibration of the carriage structure could be detected and this became more pro-
nounced for experiments carried out at higher cylinder frequencies. Also, the vibrations
became more noticeable when the cylinder was immersed in water. Hence, it is expected that
the structural damping, measured in air, is smaller than the actual structural damping when
the cylinder is in water. This increase of the structural damping in water cannot be
quanti"ed but it will lead to an overestimate of the hydrodynamic damping, especially for
experiments at high b values. A second unwanted vibration was observed when the springs
were in place to increase the frequency of the cylinder. A "rst-mode bending of the cylinder
was excited which introduced a frequency of 2 Hz into the system. This limited the highest
frequency that could be tested and the experiments had to be restricted to a frequency of
0)548 Hz that gave a maximum b-value of 1)37]105.

Drag coe$cients, estimated according to equation (27), are plotted against Keulegan}
Carpenter number, for four di!erent b values, in Figure 9(a}d). Also shown is the theoretical
prediction by Wang (1968) for laminar #ow and the empirical prediction of Bearman
& Russell (1996). In all cases, at low KC the drag coe$cients estimated from the present
experiments are larger than the values predicted by Bearman & Russell. This is re#ected in
the higher values of viscous damping seen in Figure 8. The most likely sources of additional
viscous damping are related to the omission of an end plate on the bottom of the cylinder
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Figure 10. (a) Decaying oscillation for SP00 ( f"0)167 Hz, c"9)35 m/s, t
a
"43 s). (b) Decaying oscillation for

SP02 ( f"0)366 Hz, c"4)27 m/s, t
a
"94 s). (c) Decaying oscillation for SP04 ( f"0)470 Hz, c"3)32 m/s,

t
a
"120 s).
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and the surface "nish of the cylinder. There will be a separation of #ow at the end of the
cylinder leading to increased hydrodynamic damping. Overestimates of the drag coe$cients
will arise if the structural damping is underestimated and possible reasons have been
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discussed earlier. The least smooth variation of C
d

with KC is noted for the highest
frequency value plotted in Figure 9d. This is thought to be due to the in#uence of the higher
structural mode at 2 Hz.

A further problem that was encountered was the e!ect on the cylinder motion of waves
re#ected from either end of the tank. The range of the KC-number over which measure-
ments were made had to be limited for experiments carried out at f"0)366, 0)470 and
0)548 Hz as the amplitude of the cylinder motion was observed to increase at a certain time
after the cylinder was released. This is quite clear from the traces presented in Figure 10(b,c).
This increase in amplitude is due to the waves excited by the motion of the cylinder
travelling to the ends of the tank and being re#ected back to the cylinder. A concrete beach
at one end of the tank and a wave paddle at the other were unable to completely absorb the
radiated waves.

The wave celerity was calculated using linear wave theory and, with the knowledge that
the distance to either end of the tank was 100 m, the time taken for the "rst radiated wave to
return to the cylinder was estimated. The vertical line in each plot of the amplitude of the
cylinder in Figure 10(a}c) gives the calculated time for the "rst wave crest to return. It can
be seen in Figure 10(b,c) that there is a change in the amplitude behaviour at this time.
However, in Figure 10(a), for the lowest oscillation frequency, no change is apparent. This is
consistent with the results plotted in Figures 5 and 8 which show minimal radiation
damping, and hence radiated waves, for the lowest frequency value. The precise behaviour
of the suspended cylinder to returning waves will depend on their phase relative to the
cylinder motion. For example, in Figure 10(b) the damping is observed to increase when the
"rst waves return and then the cylinder is excited.

The hydrodynamic damping for a surface-piercing cylinder is shown to be a combination
of viscous damping and radiation damping. Hence, if we wish to predict the damping of
a full scale structure, the two components of damping need to be calculated separately, for
the relevant conditions, and then combined. Returning to the example given at the
beginning of the paper, a circular cylinder with a diameter of 10 m and a natural frequency
of 0)3 Hz, then to use the results presented here the water depth is taken to be 100 m. This
gives a value of a/h of 0)05 and therefore the results plotted in Figure 5 can be used directly.
u2a/g"ka"1)81 and hence the radiation damping factor is 0)0045. The value of b appro-
priate to this cylinder is 3]107 and assuming that the empirical result in equation (4)
applies and the mass ratio of the cylinder is the same as that used in the present experiments,
then the viscous damping factor is 0)00014. Hence, compared to radiation damping, it is
small enough to be neglected.

5. CONCLUSIONS

Experiments have been carried out on a 0)5 m diameter cylinder, piercing the water surface,
to measure hydrodynamic damping. b values up to 1)37]105 have been achieved and
results are obtained for KC values as low as 10~3. The total damping is a combination of
structural, wave radiation and viscous damping. The structural damping has been mea-
sured and the radiation damping found from an analytical solution due to Dalrymple
& Dean (1972). The viscous damping is estimated by subtracting these two components
from the measured total damping. The viscous damping is also presented as a drag
coe$cient and the variation of this coe$cient with KC is shown. The variations of the drag
coe$cient with b and KC are in general agreement with those measured on a fully
submerged cylinder by Bearman & Russell (1996) and Chaplin & Subbiah (1996). In line
with results from other authors, it is observed that the results for viscous damping are
in#uenced by the surface "nish of the cylinder.
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